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ABSTRACT 

 
Background: Quantum error correction (QEC) comes from the marriage of quantum mechanics with the classical 
theory of error correcting codes. Error correction is a central concept in classical information theory, and quantum 
error correction is similarly foundational in quantum information theory. Both are concerned with the fundamental 
problem of communication, and/or information storage, in the presence of noise. Objectives: the present study was 
designed to investigate both the classical error correcting codes and a quantum error correcting codes. Methods: we 
study the main concepts of code theory such as, the distance of the code, the weight. We concentrated our work on 
both the stabilizer quantum codes and no stabilizer quantum codes. We give the correspondence of each concept 
between the classical and the quantum codes, also between the stabilizer quantum codes and CWS codes. Results: 
as results it has been found that the classical and specially the stabilizer quantum codes have much in common. 
These codes are treated in the same way specially the distance, the weight, the stabilizer and the syndrome. 
Conclusions: the CWS codes which contains the stabilizer codes and non-stabilizer codes is more effective and more 
efficient compared to the stabilizer codes. 
Keywords: Qubit, Stabilizer codes, CWS codes. 

 

1. INTRODUCTION 
 
Coding theory [1] is a branch of mathematics which seeks optimal solutions to problems concerning the 

safe and accurate transfer of information. Shannon (1948) established the topic of coding theory with his 
seminal paper on the mathematics of communication. Hamming (1950) then introduced the concept of 

an error correcting codes with his work on the correction of errors on magnetic storage media [1,2,3]. 

In recent years, coding theory has evolved beyond its original classical setting and is considered within a 
quantum theoretical perspective. 

 
Quantum computation [4,5,6] has attracted great interest because efficient algorithms have been found 

to solve a variety of classical problems, such as factoring, that are believed to be hard for classical 

computers. Moreover, as the processor size in classical computers continues to scale down, the quantum 
nature of the components of classical computers will begin to be important. Performing reliable classical 

computations on machines built of quantum components is an important problem; the possibility of 
exploiting quantum effects to achieve remarkable new performance is an even greater incentive to 

understand these systems. 
 

In quantum computation [6,7,8,9,10,11,12], it is important to preserve coherence of quantum information.  For 
this purpose, quantum information must be protected by quantum error correcting codes (QECCs) 
[4,5,6,7,8,9,13,14,15,16] from unwanted interactions and quantum noise. While there are many classical 

error correction schemes which perform close to the classical channel capacity, it is hard to apply classical 
error correction schemes directly to QEC because of various properties of quantum system such as no-

cloning, continuous error models, and measurement-disturbance tradeoffs which do not exist in classical 
systems. Despite these differences between classical error correction and QEC, it is still possible to develop 

quantum error correcting codes based on classical error-correcting structure Stabilizer codes, were 

introduced independently by Gottesman (1997) and Calderbank (1998), are analogues of classical additive 
codes. This type of code is specified by a stabilizer group, which is an Abelian subgroup of the Pauli group 

on n qubits. The code space of a stabilizer code is fixed by this stabilizer group. That is, it is a joint 
eigenspace with eigenvalue 1. Stabilizer codes can be constructed from classical linear codes that satisfy 

CLASSICAL ERRORS CORRECTING CODES AND QUANTUM ERRORS 
CORRECTING CODES 
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a particular dual-containing constraint. 
 

Recently, a more general framework, codeword stabilized quantum (CWS) codes [15,16,17], which    
includes both additive and non-additive quantum codes. CWS codes in standard form are defined by a 

graph [15] and a classical binary code.  An important aspect of the CWS framework is the fact that any 

Pauli error is equivalent in its effects to an error consisting only of Z operators.  This means that any Pauli 
error can be treated as a classical binary error. Using a set of these induced errors as the desired 

correctable error set, a quantum error correcting code can be constructed from a corresponding classical 
binary code, albeit one with a nonstandard error set. 

 
The set of codes that can be expressed in this way includes the stabilizer codes, but many others as well. 

These additional CWS codes are non-additive. Non additive codes (in principle) can encode a logical state 

of higher dimension than a stabilizer code with the same length in physical qubits, while protecting it from 
same number of errors. This promises potential gains in performance for quantum error correction. (Note, 

however, that none of the non-additive codes discovered so far have a minimum distance greater than 
three.) 

 

In the second section of this paper, we talk about the important postulates of quantum mechanics. We 
will discuss in section 3 the quantum (stabilizer) and classical error correcting codes and the 

correspondence between them which is the main objective. In the fourth section we give some examples 
of quantum codes. In section 5 the analysis will be extended to CWS codes and the correspondence 

between stabilizer codes and CWS codes is discussed section 6. Finally a conclusion is given in section 7. 
 

2. MATERIALS AND METHODS 
 

2.1 The quantum postulates: 

 
Postulate I: 

Each physical system is represented by a Hilbert space and described by physical quantities and state 

represented by linear operators in that space. 
 

Postulate II: 
Each physical quantity of a quantum system is represented by a positive Hermitian operator O, the 

expectation value of which is given by tr(ρO), where ρ is the bounded positive Hermitian trace-class 
operator representing the state of the system. 

 

Postulate III: 
When a physical quantity of a system initially prepared in a state represented by the statistical operator ρ 
is measured, the state of the system immediately after this measurement is represented by the statistical 
operator 

                   𝜌′ =
𝑃𝑘𝜌𝑃𝑘 
𝑡𝑟(𝜌𝑃𝑘)

 ,                                  (1) 

 

where Pk is the projection operator onto the subspace corresponding to measurement outcome k, with a 

probability given by the expectation value of Pk for ρ. This postulate is essential for connecting the behavior 

of quantum systems with that of the classical systems used to measure them. 

 

Postulate IV: 
Each physical system composed of two or more subsystems is represented by the Hilbert space that is 

the tensor product of the Hilbert spaces representing its subsystems; the operators representing its 
physical quantities act in this product space. 

 

Postulate V: 

The time evolution of the state of each closed physical system, that is, each physical system not interacting 
with anything outside of itself, takes place according to 

 
                           ρ(t)=U(t)ρ(0)U†(t),                         (2) 

 

where t is the time parameter and U = e−tH/ k  is a unitary operator, H being the generator of time 
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translations. 
 

3. RESULTS AND DISCUSSION 
 

Table 1: The table presents the all results about the correspondence between the classical and stabilizer quantum 

codes. 
ECC QECC 

Classical information theory: 
Is the common name for the information theory 

of Shannon, which is a probabilistic theory to 
quantify the average information content of a 
set of messages, including computer coding 

satisfies a precise statistical distribution. 

Quantum information theory: 
New way to process information, using the quantum 

mechanical properties. This is not tied to a particular system: 
Any quantum system with some specific property taken can be 

chosen. 

 
Classic computer: 

Is based on the existence of the notion bit, a 
discrete variable can take two contrasting 

states, denoted 0 and 1. 
 

 
Quantum computer: 

A quantum computer would handle instead of classical bits, 
quantum bits, called ”qubits”. These are the simplest quantum 

systems, two level systems. 
A qubit can be either in the state |0 > or in the state|1 >. 

Quantum mechanics is linear (the states, the kets, |>  in the 

notation of Dirac, are vectors in a Hilbert space). 

If |0 > and|1 >are possible states of the qubit, 
1

√2
(|0 > +|1 >) 

is also a possible state. A qubit can be suspended in a 
quantum superposition between logic states. 

 
Similarly, the input register with n qubits a quantum computer 

can be prepared a quantum superposition of 2n possible 
states, corresponding to 2n numbers coded over n bits. 

 

 
Structure of classical computer: 

Based on the realization of elementary gates. 

 
Structure of quantum computer: 

Every quantum computing can be reduced to a series of 
manipulation of one or two qubits in quantum logic gates. As 

in classical logic, you only make a small number of elementary 
gates in order to then perform an arbitrary quantum 
computing by building a complex net work of gates. 
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Classical bit : 

1 bit:  0 or 1. →  Deterministic element: 
b ∈ {0, 1}. 

n bits code a value from N = 2n. → To act on N 

amplitudes: N necessary operations. 

• n bits: 
0000........0 (0) 
0000........1 (1) 

                            ... 
          1111........1    (2n  − 1) 

 
 

• State of bit: 
V = αV0 + βV1 

with α + β = 1,   α and β reals. 
 

• Measure: 
V, integrity of the state of bit. 

 
Quantum bit: 

1 bit:  |0 > or  |1 > or 
1

√2
(|0 > +|1 >).                                  

n bits can codes a superposition of 2n values. → To act on N 

amplitudes: possible with 1 operation. 

• n qubits: 
Quantum state of the form  ∑ 𝑎𝑖

𝑁−1
𝑖=0 |𝑖 >; The information is 

contained in the amplitudes ai associated with registers. 

• State of qubit: 
|𝛹 >= α |0 > + β |1 > , 

with  |α|2 + |β|2 = 1,   α et β  complexes. 
• Measure: 

Probabilistic orthogonal projection 
 

 
• Evolution: 

Unitary transformation (i.e, reversible): 
G ∈ U (2) 

G∈ C2×2 such as G*G = Id 

|𝛹 >• ··· G 99K  |𝛹′ >= G|𝛹 > 

|𝛹′ >= G|𝛹 >• ··· G* 99K|𝛹 > 
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The space Fq  : 

 
Fq  is a finite field with q elements, 

such as q = pn is power of a prime  number. 

Hilbert space: 

 
Let (H, ||·||) a Hilbert space of finite dimension on C 

which is a vector space with the canonical inner 

product 

 
Where 𝑧 denote the complex conjugate of z. 

• For a qubit which is the quantum version 

of a bit of information has a much larger number of 
states.  These states are represented by an arrow that 

points a position on the surface of a sphere. 
→ For a qubit, the Hilbert space of dimension 2 on C, 

with the norm ||·||2. 

|0 >= (
1
0
)∈  H 

We notice 

|1 >= (
0
1
)∈  H 

(|0 >, |1 >) form an orthonormal base (H, ||·||2). 

 

Classical linear code: 
 

A code is an injective mapping  : 
{0, 1}k→ {0,1}n 

such as: 

code  ≠ codeword 
→ Because all the codewords form a code. 

A binary code C is linear if the sum of two any 
codewords is another codeword: 

∀ w1,w2∈C, w1+w2∈C. 

A linear code is a sub vector space of (Z/2Z)n. 

In particular the number of codewords is 2k, 
where k is the dimension of C. 

 

Quantum  stabilizer code: 
 

Stabilizers codes are under a very rich family in 

quantum error correcting. They have this remarkable 
quality to be fully described by a discrete group: the 

stabilizer group of the code. This is a subgroup of Pauli 
group. 

→ Let S a subgroup commutative of Pn such as    

−1Pn S, C is a stabilizer code associated with the set 

S  if: 

C={|𝛹 >∈H⊗n/M|𝛹 >=|𝛹 >∀M∈S} 

C⊆H (which is of dimension2k). 

 
Notation: 

[n, k, d]  

 
n :  the length 

k :  the dimension 

d :  the minimum distance 

 
Notation: 

[[n, k, d]] 

The double brackets used for quantum code 
distinguishes classical codes. 

 
n :  the length 

k :  the dimension 

d :  the minimum distance 
 

 
The locality (separability):  

The classical bits can be copied and multiplied 
as many times as you want. 

 

 
 

 
Quantum non-locality: 

The no-cloning theorem shows that it is impossible to 
design a quantum cloned that can clone so i.e., 

that can perform the operation. 
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Type of errors: 
We can say that the errors that appear on a 

classic bit of type: bit inversion. 
 

  

Type of errors: 
We can then say that the errors that appear on a qubit 

come from precisely of the Pauli group, i.e, it can 
three types of  errors occur: - bit flip 

                                                      - phase flip 
                                                      - bit & phase flip 

 

• bit flip: 

𝑋 = (
0 1
1 0

) ;  X|a>=|a⊕1> 

 

• phase flip: 

Z = (
1 0
0 −1

) ; Z|a>=(−1)a|a> 

 

• bit & phase flip: 

Y = (
0 i
−i 0

) ;   Y|a>=i(−1)a|a⊕1> 

 

 
 

The redondance: 

Classical correcting codes using redundancy to 
protect information. 

 

Intrication: 

Quantum correcting codes used entanglement to 
relocate several physical systems the information 

encoded. 
 

 

Internal law: 

The addition. 

 

Internal law: 

The multiplication. 

Parity matrix: 
n − k  rows,  n columns. 

Stabilizer: 

When we speak of stabilizers Group (associated with a 
code C), it is assumed that S satisfies the conditions: 

S is a commutative subgroup of Pn, such as−1Pn S.  

→ The elements of S are the stabilizer of C. 

→ n − k generators of Pn commuting. 

The distance: 
The Hamming distance, in the binary  case F2   

between two vectors X and Y  of dimension n  

(X, Y ∈F2
n) match the number of components 

for which the two vectors are different 

 
dH (X, Y ) = |{i: Xi≠ Yi,  0 ≤ i≤ n}| 

The distance: 
In a similar manner of code classic. 

http://www.american-jiras.com/


American Journal of Innovative Research and Applied Sciences. ISSN 2429-5396 I www.american-jiras.com                             

 

  
182 

 

 

 

 
 

The weight: 
The Hamming weight WH (X) of a vector X of 

Fn is the number of non-zero components of 

X. It is immediate that ∀ X∈F2
n, 

 

WH (X) = dH (X,0) 

 

WH (X) = #{i∈N/ Xi≠0}. 

The weight: 

The weight of a Pauli error is defined by 
 

W (E) = #{i/ Ei≠I}. 

Classical  logic gates: 

 
Function ”Et “ 

Function ”NON “   

Function ”NAND “ 
Function ”OU exclusive “. 

 

Quantum logic gates: 

• Gates on one qubit: 
- The gate ”Not” X 

- The gate Y 
- The gate Z 
- The gate S. 

- The gate of Hadamard 

• Gates on two qubits: 

- Controlled phase gate(CZ) 

- The gate CNOT 

• Gates on three qubits: 

-  Gate  of Toffoli 

Controlled controlled not ≡ gate of Toffoli. 

 
 

 4. Examples of quantum error correcting codes 
 
4.1. The five qubit code [[5, 1, 3]] 

 
The [[n, k, d]] = [[5, 1, 3]] perfect code encodes a single qubit (k = 1), and corrects all errors of weight 1 (since 

(d − 1)/2 = 1). This code is  the  smallest  single-error  correcting  quantum  code [4,5,6,7]. The cardinality 

of [[5, 1, 3]] is |S|=2n−k=16 and the set DS
[[5,1,3]] 

of n−k=4 stabilizer group generators is given by 

 

𝐷𝑆
[[5,1,3]]

=< 𝜎𝑥𝜎𝑧𝜎𝑧𝜎𝑥𝐼, 𝐼𝜎𝑥𝜎𝑧𝜎𝑧𝜎𝑥, 𝜎𝑥𝐼𝜎𝑥𝜎𝑧𝜎𝑧, 𝜎𝑧𝜎𝑥𝐼𝜎𝑥𝜎𝑧 >.           (3) 

 

The code is the simultaneous eigenspace with eigenvalue 1 of 4 commuting check operators (stabilizer  
generators)  

 

𝑁1 = 𝜎𝑥𝜎𝑧𝜎𝑧𝜎𝑥𝐼, 
𝑁2 =  𝐼𝜎𝑥𝜎𝑧𝜎𝑧𝜎𝑥, 

                                      𝑁3 = 𝜎𝑥𝐼𝜎𝑥𝜎𝑧𝜎𝑧,                                   (4) 

𝑁4 = 𝜎𝑧𝜎𝑥𝐼𝜎𝑥𝜎𝑧. 
 

All of these stabilizer generators square to I, they are mutually commuting because there are two 

collisions between 𝜎𝑥 and 𝜎𝑧. The stabilizer and generator are given by 
 

                            

(

 
 
 

𝜎𝑥𝜎𝑧𝜎𝑧𝜎𝑥𝐼
𝐼𝜎𝑥𝜎𝑧𝜎𝑧𝜎𝑥
𝜎𝑥𝐼𝜎𝑥𝜎𝑧𝜎𝑧
𝜎𝑧𝜎𝑥𝐼𝜎𝑥𝜎𝑧
𝜎𝑥𝜎𝑥𝜎𝑥𝜎𝑥𝜎𝑥
𝜎𝑧𝜎𝑧𝜎𝑧𝜎𝑧𝜎𝑧)

 
 
 

,                                              (5) 
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and the check parity matrix is 
 

H = (

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

|

0 0 1 0 1
1 0 0 1 0
0 1 0 0 1
1 0 1 0 0

).                      (6) 

 

We can take the basis codewords for this code to be 

 

           |0𝐿 >= ∑ 𝑁|00000 >𝑁𝜖𝐷𝑆 ,                                    (7) 

and 

                 |1𝐿 >= 𝑋̅|0𝐿 >,                                               (8) 

 

 

that is 

 

|0𝐿 >=
1

4
[|00000 > +|10010 > +|01001 > +|01010 > −|11011 > − 

                                          |00100 > −|11000 > −|11101 > −|00011 > −|11110 > −            (9) 

                                          |01111 > −|10001 > −|01100 > +|10111 > +|00101 > 

+|10100 >] 
 

and 

|1𝐿 >=
1

4
[|11111 > +|01101 > +|10110 > +|01011 > +|10101 > − 

                                          |00100 > −|11001 > −|00111 > −|00010 > −|11100 > −          (10) 

                                          |00001 > −|10000 > −|01110 > −|10011 > −|01000 > 

                                                                  +|11010 >]. 
 

4.2 Six qubit code [[6, 1, 3]] 
 

The [[6, 1, 3]] code is the degenerate single-error correcting quantum code. Both the six-qubit code and 

the five-qubit code correct an arbitrary single-qubit error. But the six-qubit code has the advantage that 

it corrects a larger set of errors than the five-qubit code. This error correcting capability comes at the 

expense of a larger number of qubits - it corrects a larger set of errors because the Hilbert space for 
encoding is larger than that for the five-qubit code. 

 

        The cardinality of its stabilizer group S is |S| = 2n−k = 32 and the set 𝑈𝑆
[[6,1,3]]

 on n-k=5 stabilizer group 

generators is given by    

 

𝑈𝑆
[[6,1,3]]

=< 𝜎𝑦𝐼𝜎𝑧𝜎𝑥𝜎𝑥𝜎𝑦, 𝜎𝑧𝜎𝑥𝐼𝐼𝜎𝑥𝜎𝑧, 𝐼𝜎𝑧𝜎𝑥𝜎𝑥𝜎𝑥𝜎𝑥, 𝐼𝐼𝐼𝜎𝑧𝐼𝜎𝑧, 𝜎𝑧𝜎𝑧𝜎𝑧𝐼𝜎𝑧𝐼 >.   (11) 

 

 
 

m1 

m2 

m3 

m4 

m5 

   

𝜎𝑦𝐼𝜎𝑧𝜎𝑥𝜎𝑥𝜎𝑦 

𝜎𝑧𝜎𝑥𝐼𝐼𝜎𝑥𝜎𝑧 
𝐼𝜎𝑧𝜎𝑥𝜎𝑥𝜎𝑥𝜎𝑥 
𝐼𝐼𝐼𝜎𝑧𝐼𝜎𝑧 
𝜎𝑧𝜎𝑧𝜎𝑧𝐼𝜎𝑧𝐼 

𝑋 
𝑍 

𝜎𝑧
I 

  𝜎𝑧𝐼𝜎𝑥𝐼𝜎𝑥𝐼 
𝐼𝜎𝑧𝐼𝐼𝜎𝑧𝜎𝑧 
 

 
 

Table 2: The table presents the stabilizer of [[6,1,3]]
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At least one generator from the six-qubit stabilizer anti-commutes with each of the single-qubit Pauli 
errors, Xi, Yi, Zi, where i= 1,...,6, because the generators have at least one Z and one X operator in all six 

positions. Additionally, at least one generator from the stabilizer anti-commutes with each pair of two 

distinct Pauli errors (except Z4Z6, which is in the stabilizer 𝑈𝑆
[[6,1,3]]

). The check parity matrix is 

 
 

H =

(

 
 

1 0 1 0 0 1
1 0 0 0 0 1
0 1 0 0 0 0
0
1
0
1
0
1
1
0
0
1
1
0

|

1 0 0 1 1 1
0 1 0 0 1 0
0 0 1 1 1 1
0
0
0
0
0
0
0
0
0
0
0
0)

 
 
.      (12) 

 

We can take the basis codewords for this code to be 
 

|0𝐿 >=
1

√8
[|000000 > −|100111 > +|001111 > −|101000 > +|010010 > + 

                                              |110101 > −|011101 > −|111010 >],                                          (13) 

 

and 

|1𝐿 >=
1

√8
[|001010 > −|101101 > +|000101 > +|100010 > −|011000 > − 

                                               |111111 > −|010111 > +|110000 >].                                         (14) 

 

 4.3 CSS seven qubit code 
  

The [[n, k, d]] = [[7, 1, 3]] perfect code encodes a single qubit (k = 1), and corrects all errors of weight 1  

(Since (d − 1)/2 =1). In order to construct a CSS (Calderbank–Shor–Steane) code you need to have two  

classical linear codes C1 [n,k1], and C2 [n,k2] such that C2⊂C1 and C1, C⊥ both correct errors.  

The simplest CSS code is the 7-bit code discovered by Steane. It uses the CSS construction with 
H1 = H2 = H. For CSS code: 

 

                                         H = [
𝐶2 0
0 𝐶1

] =[ H𝑍, H𝑋],                                                       (15) 

 

this is the [7, 4, 3] Hamming code, it is single errors correcting and contains its dual, so leads to a single-

error correcting quantum code of parameters [[n, k, d]] = [[7, 1, 3]], i.e., a single qubit stored in 7, with 

minimum distance 3.  The two codewords are: 

|0𝐿 >=
1

√8
[|0000000 > +|1010101 > +|00110011 > +|101000 > +|0001111 > + 

                                               |1011010 > +|0111100 > 0|1101001 >],                                       (16) 

 

and 

|1𝐿 >=
1

√8
[|1111111 > +|1001100 > +|0101010 > +|0011001 > +|1110000 > + 

                                            |1000011 > +|0100101 > +|0010110 >].                                     (17) 
 

The cardinality of [[7, 1, 3]] is |S| = 2n−k= 64 and the set 𝑊𝑆
[[7,1,3]]

 of n-k=6 stabilizer group generators is given by  

 

       𝑊𝑆
[[7,1,3]]

=< 𝜎𝑥𝜎𝑥𝜎𝑥𝜎𝑥𝐼𝐼𝐼, 𝜎𝑥𝜎𝑥𝐼𝐼𝜎𝑥𝜎𝑥𝐼, 𝜎𝑥𝐼𝜎𝑥𝐼𝜎𝑥𝐼𝜎𝑥, 𝜎𝑧𝜎𝑧𝜎𝑧𝜎𝑧𝐼𝐼𝐼, 𝜎𝑧𝜎𝑧𝐼𝐼𝜎𝑧𝜎𝑧𝐼,      (18) 

𝜎𝑧𝐼𝜎𝑧𝐼𝜎𝑧𝐼𝜎𝑧 >. 
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5. Codeword stabilized (CWS) codes 
 
Codeword stabilized (CWS) codes [15,16,17] are a broad class of quantum error-correcting codes that 

include both additive and non additive quantum codes. Stabilizer codes can be considered a subset of 
CWS codes (though generally not in standard form). 

 

Non-additive codes and additive codes  have  a  difference  in  the  dimension  of  the  code  space.  An additive 
(stabilizer) code encodes a definite number k of logical qubits into a codeword of n physical qubits. Such a 

code with minimum distance d is denoted an [[n, k, d]] code. The dimension of the code space is        K= 2
k

. 
For a non-additive code, the dimension K of the code space need not be a power of 2. Thus we introduce a 

different notation for non-additive codes; we denote a non-additive quantum code that encodes a K-

dimensional code space into n physical qubits with minimum distance d as an ((n,K,d)) code. 

 
A CWS code is locally Clifford equivalent to a form specified by a graph G and a classical binary code. This is 

called standard form. In standard form, the graph G and its adjacency matrix A determines the word stabilizer 
of the CWS code. The graph G has n vertices, one for each qubit of the codeword.  The word stabilizer S is 

a maximal Abelian subgroup of the Pauli group Pn, and has a set of generators corresponding to the vertices 

of the graph G.  For a CWS code in standard form, the codeword stabilizer generators {Si} have the following 

structure: 

Si= XiZ
ri, (19) 

where ri is the i-th row vector of the adjacency matrix A. That is, each generator Si has a Pauli X operator on 

the qubit corresponding to vertex i of the graph, Pauli Z operators on the qubits corresponding to each of the 

neighbors of i, and identity operators I on all the other qubits. The word stabilizer S is generated by the set 
{Si}. 

 
A unique base state |𝑆 >. is  the  common  +1  eigenstate  of  the  word  stabilizer S specified  by  the graph 
G.  This state is fixed by any element S ∈S of the word stabilizer: 

 
|𝑆 >= 𝑆 |𝑆 >. 

 

The word operators {ωl} are also elements of Pn. The code space is spanned by basis states obtained by 

applying word operators to the base state|𝑆 >, and each basis state is of the form 

 
|𝜔𝑙| >= ωl|𝑆 >. 

 

Therefore, the number of the word operators determines the dimension of the code space, and the word 

operators map the base state onto an orthogonal state. 
 

Theorem:  An [n, k] stabilizer code with stabilizer generators S1, ...,Sn−k and logical operations 𝑋1 . . . 𝑋k and      𝑍1 

. . . 𝑍k, is equivalent to the CWS code defined by 

 

S = 
.
S1, ..., Sn−k, 𝑍1 . . . 𝑍k 

 

and word operators 

 

ωv =𝑋̅1
(v)

1⊗...⊗𝑋̅k
(v)

k 

 
where v is a k-bit string.
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6. RESULTS AND DISCUSSION 
 

 able 3: The table presents the correspondence between the stabilizer codes and CWS codes. 
Stabilizer code CWS code 

Quantum error correcting code Quantum error correcting code 

Include just the additive code Include the additive and non-additive code 

Stabilizer code would have all + 1 eigenvalues 

for all codewords 

The codewords ωl |𝑆 > are all eigenstates of 

All s ∈S : S ωl |𝑆 >= ± ωl |𝑆 > 
For a general stabilizer code with basis vectors 

|ψi) to detect errors from a set ξ: 

<ψi|E| ψj >= CE δij for all E ∈ξ 

For codewords of the form |𝜔𝑙 >= ωl |𝑆 >
 

 

< S|ω†iEωj|S>=CE δij. 

  

The stabilizer is S = <S1, ..., Sn−k> , with logical 

operators 𝑋k. . . 𝑋n-k, 𝑍k. . . 𝑍n-k

.
, 

 

define a stabilizer code. 

The stabilizer is S = 
.
S1, ...,Sn−k, 𝑋1. . . 𝑋n-k 

and word operators 𝑍1. . . 𝑍n-k 

define a CWS code. 

  

  

7. CONCLUSION 
 
Quantum error correction (QEC) plays an important role in quantum information processing and 
communication.  Without QEC it is impossible to maintain a quantum state against the corrupting effects 

of decoherence for long enough to carry out nontrivial quantum computations or communication protocols. 
 

In this paper we studied the correspondence between classical error correcting codes and the quantum error 

correcting codes precisely the stabilizer codes. We studied also the correspondence between the quantum 
stabilizer codes and CWS codes. For major conclusion, the CWS codes which contains the stabilizers codes 

and non-stabilizers code is more effective and more efficient compared to the stabilizers codes. 
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