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ABSTRACT

Background: Quantum error correction (QEC) comes from the marriage of quantum mechanics with the classical
theory of error correcting codes. Error correction is a central concept in classical information theory, and quantum
error correction is similarly foundational in quantum information theory. Both are concerned with the fundamental
problem of communication, and/or information storage, in the presence of noise. Objectives: the present study was
designed to investigate both the classical error correcting codes and a quantum error correcting codes. Methods: we
study the main concepts of code theory such as, the distance of the code, the weight. We concentrated our work on
both the stabilizer quantum codes and no stabilizer quantum codes. We give the correspondence of each concept
between the classical and the quantum codes, also between the stabilizer quantum codes and CWS codes. Results:
as results it has been found that the classical and specially the stabilizer quantum codes have much in common.
These codes are treated in the same way specially the distance, the weight, the stabilizer and the syndrome.
Conclusions: the CWS codes which contains the stabilizer codes and non-stabilizer codes is more effective and more
efficient compared to the stabilizer codes.
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1. INTRODUCTION

Coding theory [1] is a branch of mathematics which seeks optimal solutions to problems concerning the
safe and accurate transfer of information. Shannon (1948) established the topic of coding theory with his
seminal paper on the mathematics of communication. Hamming (1950) then introduced the concept of
an error correcting codes with his work on the correction of errors on magnetic storage media [1,2,3].

In recent years, coding theory has evolved beyond its original classical setting and is considered within a
quantum theoretical perspective.

Quantum computation [4,5,6] has attracted great interest because efficient algorithms have been found
to solve a variety of classical problems, such as factoring, that are believed to be hard for classical
computers. Moreover, as the processor size in classical computers continues to scale down, the quantum
nature of the components of classical computers will begin to be important. Performing reliable classical
computations on machines built of quantum components is an important problem; the possibility of
exploiting quantum effects to achieve remarkable new performance is an even greater incentive to
understand these systems.

In quantum computation [6,7,8,9,10,11,12], it is important to preserve coherence of quantum information. For
this purpose, quantum information must be protected by quantum error correcting codes (QECCs)
[4,5,6,7,8,9,13,14,15,16] from unwanted interactions and quantum noise. While there are many classical
error correction schemes which perform close to the classical channel capacity, it is hard to apply classical
error correction schemes directly to QEC because of various properties of quantum system such as no-
cloning, continuous error models, and measurement-disturbance tradeoffs which do not exist in classical
systems. Despite these differences between classical error correction and QEC, it is still possible to develop
quantum error correcting codes based on classical error-correcting structure Stabilizer codes, were
introduced independently by Gottesman (1997) and Calderbank (1998), are analogues of classical additive
codes. This type of code is specified by a stabilizer group, which is an Abelian subgroup of the Pauli group
on n qubits. The code space of a stabilizer code is fixed by this stabilizer group. That is, it is a joint
eigenspace with eigenvalue 1. Stabilizer codes can be constructed from classical linear codes that satisfy
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a particular dual-containing constraint.

Recently, a more general framework, codeword stabilized quantum (CWS) codes [15,16,17], which
includes both additive and non-additive quantum codes. CWS codes in standard form are defined by a
graph [15] and a classical binary code. An important aspect of the CWS framework is the fact that any
Pauli error is equivalent in its effects to an error consisting only of Z operators. This means that any Pauli
error can be treated as a classical binary error. Using a set of these induced errors as the desired
correctable error set, a quantum error correcting code can be constructed from a corresponding classical
binary code, albeit one with a nonstandard error set.

The set of codes that can be expressed in this way includes the stabilizer codes, but many others as well.
These additional CWS codes are non-additive. Non additive codes (in principle) can encode a logical state
of higher dimension than a stabilizer code with the same length in physical qubits, while protecting it from
same number of errors. This promises potential gains in performance for quantum error correction. (Note,
however, that none of the non-additive codes discovered so far have a minimum distance greater than
three.)

In the second section of this paper, we talk about the important postulates of quantum mechanics. We
will discuss in section 3 the quantum (stabilizer) and classical error correcting codes and the
correspondence between them which is the main objective. In the fourth section we give some examples
of quantum codes. In section 5 the analysis will be extended to CWS codes and the correspondence
between stabilizer codes and CWS codes is discussed section 6. Finally a conclusion is given in section 7.

2. MATERIALS AND METHODS

2.1 The quantum postulates:

Postulate I:
Each physical system is represented by a Hilbert space and described by physical quantities and state
represented by linear operators in that space.

Postulate II:

Each physical quantity of a quantum system is represented by a positive Hermitian operator O, the
expectation value of which is given by t{p0), where p is the bounded positive Hermitian trace-class
operator representing the state of the system.

Postulate III:

When a physical quantity of a system initially prepared in a state represented by the statistical operator p
is measured, the state of the system immediately after this measurement is represented by the statistical
operator

_ PypPy
T (P ! 1)

where P, is the projection operator onto the subspace corresponding to measurement outcome &, with a
probability given by the expectation value of P, for p. This postulate is essential for connecting the behavior
of quantum systems with that of the classical systems used to measure them.

Postulate IV:

Each physical system composed of two or more subsystems is represented by the Hilbert space that is
the tensor product of the Hilbert spaces representing its subsystems; the operators representing its
physical quantities act in this product space.

Postulate V:
The time evolution of the state of each closed physical system, that is, each physical system not interacting
with anything outside of itself, takes place according to

pO=U®p(O)U'(®). )

—tH/ k

where tis the time parameter and U = e is a unitary operator, H being the generator of time
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translations.

3. RESULTS AND DISCUSSION

Table 1: The table presents the all results about the correspondence between the classical and stabilizer quantum
codes.

EcC QECC
Classical information theory: Quantum information theory:
Is the common name for the information theory New way to process information, using the quantum

of Shannon, which is a probabilistic theory to | mechanical properties. This is not tied to a particular system:
quantify the average information content of a |Any quantum system with some specific property taken can be
set of messages, including computer coding chosen.

satisfies a precise statistical distribution.

Classic computer: Quantum computer:
Is based on the existence of the notion bit, a| A quantum computer would handle instead of classical bits,
discrete variable can take two contrasting quantum bits, called "qubits”. These are the simplest quantum
states, denoted 0 and 1. systems, two level systems.

A qubit can be either in the state |0 > or in the state|1 >.
Quantum mechanics is linear (the states, the kets, |> in the
notation of Dirac, are vectors in a Hilbert space).

If |0 > and|1 >are possible states of the qubit, %(w > +|1>)

is also a possible state. A qubit can be suspended in a
quantum superposition between logic states.

Similarly, the input register with n qubits a quantum computer
can be prepared a quantum superposition of 2" possible
states, corresponding to 2" numbers coded over n bits.

Structure of classical computer: Structure of quantum computer:
Based on the realization of elementary gates. Every quantum computing can be reduced to a series of
manipulation of one or two qubits in quantum logic gates. As
in classical logic, you only make a small number of elementary
gates in order to then perform an arbitrary quantum
computing by building a complex net work of gates.
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Classical bit :
1 bit: 0 or 1. — Deterministic element:
b € {0, 1}.
n bits code a value from N = 2", — Toacton N
amplitudes: N necessary operations.

Quantum bit:
1 bit: |0 > or |1> or %UO > +[1 >).

n bits can codes a superposition of 2" values. — To acton N

amplitudes: possible with 1 operation.

_ n qubits:
h bits: 0000 0 (0 Quantum state of the form YN !q; |i >; The information is
00001 8 contained in the amplitudes a; associated with registers.
B State of qubit:
1111........ 1 (20 -1) ¥ >=al0>+B|1>,
with |a|2 + |B|2 =1, aetB complexes.
Measure:
State of bit: Probabilistic orthogonal projection
V = aVo + BV1 2
witha + B =1, a and B reals. ‘;, 0)
a|0) + 8[1) - Mesure .
Measure: y (1)
V, integrity of the state of bit. Al
Evolution:
Unitary transformation (i.e, reversible):
GeU(2)
Ge C?*2such as G*G = Id
| >e - GOOK |¥'>=G|¥ >

[P’ >= G|¥ >e " G* O9K|¥ >
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The space Fq :

Fq is a finite field with q elements,
such as q =p" is power of a prime number.

Hilbert space:

Let (H, [|"]|) a Hilbert space of finite dimension on C
which is a vector space with the canonical inner
product

'
!
i

. L, I =y
o~ - » - . -
2ai%i € e'-,_.asj iy f,l' ; :,_..S;',_,c -#r'”_.l'{ €, f_;',:'
i \ I

Where z denote the complex conjugate of z.

¢ For a qubit which is the quantum version
of a bit of information has a much larger number of
states. These states are represented by an arrow that
points a position on the surface of a sphere.
— For a qubit, the Hilbert space of dimension 2 on C,

with the norm ||-]]2.
[0 >= (é)e H
We notice
|1 >= (g)e H
(]0 >, |1 >) form an orthonormal base (H, ||*]]2).

Classical linear code:

A code is an injective mapping :
{0, 1}~ /0,1}"
such as:
code # codeword
— Because all the codewords form a code.
A binary code C is linear if the sum of two any
codewords is another codeword:
wi1,w2€eC, wi1+w2€eC.

A linear code is a sub vector space of (z2/22)".

In particular the number of codewords is 2k,
where k is the dimension of C.

Quantum stabilizer code:

Stabilizers codes are under a very rich family in
quantum error correcting. They have this remarkable
quality to be fully described by a discrete group: the

stabilizer group of the code. This is a subgroup of Pauli
group.

— Let S a subgroup commutative of Pn such as
-1Pn ¢S, C is a stabilizer code associated with the set
S if:

C={|¥ >eHEONM|Y >=|¥ >MeS)

CcH k).

(which is of dimension2

Notation:
[n, k, d]

n : the length
k : the dimension
d : the minimum distance

Notation:
[In, k, d]]
The double brackets used for quantum code
distinguishes classical codes.

n : the length
k : the dimension
d : the minimum distance

The locality (separability):
The classical bits can be copied and multiplied
as many times as you want.

Quantum non-locality:
The no-cloning theorem shows that it is impossible to
design a quantum cloned that can clone so i.e.,
that can perform the operation.
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Type of errors:
We can say that the errors that appear on a
classic bit of type: bit inversion.

Type of errors:

We can then say that the errors that appear on a qubit
come from precisely of the Pauli group, i.e, it can
three types of errors occur: - bit flip

- phase flip
- bit & phase flip

e bit flip:
X= ((1) (1)); Xla>= [apl>
e phase flip:
_(1 0y, —(-1\@
2=(, °))iZa>=(-1)%a>

e bit & phase flip:

(Bi i): Yja>={-1)?/ap1>

Y
0

The redondance:
Classical correcting codes using redundancy to
protect information.

Intrication:
Quantum correcting codes used entanglement to
relocate several physical systems the information
encoded.

Internal law:
The addition.

Internal law:
The multiplication.

Parity matrix:
n —k rows, n columns.

Stabilizer:

When we speak of stabilizers Group (associated with a
code C), it is assumed that S satisfies the conditions:
S is a commutative subgroup of Pn, such as-1pn ¢S.

— The elements of S are the stabilizer of C.
— n — k generators of Pn commuting.

The distance:
The Hamming distance, in the binary case F2
between two vectors X and Y of dimension n

(X, Y eF2") match the number of components
for which the two vectors are different

dH (X, Y) = [{i: Xi# Yi, 0<i<n}|

The distance:
In a similar manner of code classic.
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The weight: The weight:
The Hamming weight WH (X) of a vector X of The weight of a Pauli error is defined by

FMis the number of non-zero components of

X. It is immediate that ¥XeF,", W (E) = #{i/ Eixl}.

WhHh (X) = dH (X,0)

Wh (X) = #{i eN/ Xiz0}.

Classical logic gates: Quantum logic gates:
e Gates on one qubit:
Funct!on t - The gate "Not” X
Function '"VON' - The gate Y
Function '"NVAND' - The gate Z2
Function "OU exclusive", - The gate S.

- The gate of Hadamard

Gates on two qubits:
- Controlled phase gate(C2)
- The gate CNOT

Gates on three qubits:
- Gate of Toffoli
Controlled controlled not = gate of Toffoli.

4. Examples of quantum error correcting codes
4.1. The five qubit code [[5, 1, 3]]

The[[n, k, d]] =[[5, 1, 3]] perfect code encodes a single qubit (k = 1), and corrects all errors of weight 1 (since
(d — 1)/2 =1). This code is the smallest single-error correcting quantum code [4,5,6,7]. The cardinality

of [[5,1, 3]]is |S|:2”_k216 and the set Ds[[5’1’3]] of n—k=4 stabilizer group generators is given by

DS[[5’1’3]] =< 0,0,0,0,1,10,0,0,0,,0,10,0,0,,0,0,. 10,0, >. 3)
The code is the simultaneous eigenspace with eigenvalue 1 of 4 commuting check operators (stabilizer
generators)

N, = o0,0,0,0,1,
N, = lo,0,0,0,,
Ny =o,l0,0,0,, (@))
N, =o0,0,l0,0,.

All of these stabilizer generators square to I, they are mutually commuting because there are two

collisions between o, and o,. The stabilizer and generator are given by
0,0,0,0,1
lo,0,0,0,
o lo.0,0,
o,0.lo,.0,
Uxaxaxaxax
O-Zo-Zo-Zo-Zo-Z

: (5)
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and the check parity matrix is

11 0 0 O 0 01 0 1
|0 1 1 0 0 10 01 0
H_00110|01001 (6)
0 0 0 1 1 1 0 1 0 O
We can take the basis codewords for this code to be
and B
|1, >= X0, >, (8)
that is
1
|0, >:Z[|OOOOO>+|10010>+|01001>+|01010>—|11011>—
|00100 > —|11000 > —|11101 > —|00011 > —|11110 > — 9
01111 > —|10001 > —|01100 > +]10111 > +|00101 >
+]10100 >]
and

1
1, >=7[l11111 > +|01101 > +[10110 > +[01011 > +|10101 > —

00100 > —|11001 > —|00111 > —|00010 > —|11100 > — (10)
00001 > —|10000 > —|01110 > —|10011 > —|01000 >
+]11010 >].

4.2 Six qubit code [[6, 1, 3]]

The [[6, 1, 3]] code is the degenerate single-error correcting quantum code. Both the six-qubit code and
the five-qubit code correct an arbitrary single-qubit error. But the six-qubit code has the advantage that
it corrects a larger set of errors than the five-qubit code. This error correcting capability comes at the
expense of a larger humber of qubits - it corrects a larger set of errors because the Hilbert space for
encoding is larger than that for the five-qubit code.

The cardinality of its stabilizer group S is |S| = 2" %= 32 and the set US[[6’1’3]] on n-k=5 stabilizer group
generators is given by

Ub[[e’l‘?’]] =< 0,,10,05,050,,0,0,110,0,,10,0,0,0,0yx,1110,10,,0,0,0,10,1 >. (11)
mi 0y10,0,0,0y
m2 o,0.1lo,0,
m3 10,0,0,0,0,
m“ o, lo,
5 0,0,0,10,1
X oylo o,
Z lo,llo,o,

Table 2: The table presents the stabilizer of [[6,1,3]]
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At least one generator from the six-qubit stabilizer anti-commutes with each of the single-qubit Pauli
errors, Xi, Yi, Zi, where i= 1,...,6, because the generators have at least one Z and one X operator in all six
positions. Additionally, at least one generator from the stabilizer anti-commutes with each pair of two

distinct Pauli errors (except Z#Z®, which is in the stabilizer U£[6’1’3”). The check parity matrix is

101 0 0 1 1 0 0 1 1 1
10 0 0 0 1 01 0 0 10
H=]0 100001l 00111 1] (12
0 0 01 01 0O 00O OO
1 11 0 1 0 0O 0O 0O OO
We can take the basis codewords for this code to be
1
|0, >= EHOOOOOO > —|100111 > +|001111 > —|101000 > +|010010 > +
[110101 > —|011101 > —|111010 >], (13)

and
1
|1, >= ﬁ[|001010 > —|101101 > +|000101 > +|100010 > —|011000 > —
[111111 > —|010111 > +|110000 >]. (14)

4.3 CSS seven qubit code

The [[n, k, d]] = [[7, 1, 3]] perfect code encodes a single qubit (k = 1), and corrects all errors of weight 1
(Since (d — 1)/2 =1). In order to construct a CSS (Calderbank—Shor—Steane) code you need to have two

classical linear codes C1 [n,k1], and C2 [n,k2] such that C2cC1 and C1, C- both correct errors.

The simplest CSS code is the 7-bit code discovered by Steane. It uses the CSS construction with
H1 = H2 =H. For CSS code:

H=[T o] =rHsm5 (15)

this is the [7, 4, 3] Hamming code, it is single errors correcting and contains its dual, so leads to a single-
error correcting quantum code of parameters [[n, k, d]] = [[7, 1, 3]], i.e., a single qubit stored in 7, with
minimum distance 3. The two codewords are:

1
|0, >= ﬁnooooooo > +|1010101 > +|00110011 > +]|101000 > +]0001111 > +
1011010 > +|0111100 > 0]1101001 >], (16)

and
1
|1, >= ﬁ[|1111111 > +|1001100 > +|0101010 > +|0011001 > +|1110000 > +
[1000011 > +]0100101 > +|0010110 >]. (17

The cardinality of [[7, 1, 3]] is |S| = 2" *= 64 and the set WS[[7’1’3]] of n-k=6 stabilizer group generators is given by

%[[7'1'3]] =< 0,0,0,0,111, 0,0, 110,0,1,0, 10, 10,10,,0,0,06,0,111,0,0,1l6,0,I, (18)

ozlo,lo,lo, >.
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5. Codeword stabilized (CWS) codes

Codeword stabilized (CWS) codes [15,16,17] are a broad class of quantum error-correcting codes that
include both additive and non additive quantum codes. Stabilizer codes can be considered a subset of
CWS codes (though generally not in standard form).

Non-additive codes and additive codes have a difference in the dimension of the code space. An additive
(stabilizer) code encodes a definite number k of logical qubits into a codeword of n physical qubits. Such a
code with minimum distance d is denoted an [[n, k, d]] code. The dimension of the code space is K= 2k.
For a non-additive code, the dimension K of the code space need not be a power of 2. Thus we introduce a
different notation for non-additive codes; we denote a non-additive quantum code that encodes a K-
dimensional code space into n physical qubits with minimum distance d as an ((n,K,d)) code.

A CWS code is locally Clifford equivalent to a form specified by a graph G and a classical binary code. This is
called standard form. In standard form, the graph G and its adjacency matrix A determines the word stabilizer
of the CWS code. The graph G has n vertices, one for each qubit of the codeword. The word stabilizer S is
a maximal Abelian subgroup of the Pauli group Pn, and has a set of generators corresponding to the vertices
of the graph G. For a CWS code in standard form, the codeword stabilizer generators {Sj} have the following
structure:
Si= XiZ", (19)

where rij is the i-th row vector of the adjacency matrix A. That is, each generator Si has a Pauli X operator on
the qubit corresponding to vertex /of the graph, Pauli Zoperators on the qubits corresponding to each of the
neighbors of /, and identity operators 7 on all the other qubits. The word stabilizer S is generated by the set

{Si}.

A unique base state |§ >.is the common +1 eigenstate of the word stabilizer S specified by the graph
G. This state is fixed by any element S €S of the word stabilizer:

IS >=5|S >.

The word operators {w|} are also elements of Pn. The code space is spanned by basis states obtained by
applying word operators to the base state|S >, and each basis state is of the form

lwi] >= @S >.

Therefore, the number of the word operators determines the dimension of the code space, and the word
operators map the base state onto an orthogonal state.

Theorem: An [n, k] stabilizer code with stabilizer generators Sy, ...,S,—x and logical operations X1 . . . Xxand Z1
... Zx, is equivalent to the CWS code defined by

S=St,..., Syt Z1...Zk
and word operators

v =X1(V)1 @ @Xk(v)k

where v is a k-bit string.
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6. RESULTS AND DISCUSSION

able 3: The table presents the correspondence between the stabilizer codes and CWS codes.

Stabilizer code CWS code
Quantum error correcting code Quantum error correcting code
Include just the additive code Include the additive and non-additive code
Stabilizer code would have all + 1 eigenvalues The codewords w) |S > are all eigenstates of
for all codewords AlSES: Sw|S >= +w |S >
For a general stabilizer code with basis vectors For codewords of the form |w; >= o |S >
lwi) to detect errors from a set ¢:
<y;ilE| wj >= Cedijjforall E & < S|owtiEwj|S>=CE i
The stabilizer is S = <8y, ..., S,,—x> , with logical The stabilizer is S = S1, ...,.Sy—t, )_(1_-- - Xnk
B o o and word operators Z1. .. Znk
operators Xk. . . Xn-ks Zk. - - Zn-k define a CWS code.
define a stabilizer code.

7. CONCLUSION

Quantum error correction (QEC) plays an important role in quantum information processing and
communication. Without QEC it is impossible to maintain a quantum state against the corrupting effects
of decoherence for long enough to carry out nontrivial quantum computations or communication protocols.

In this paper we studied the correspondence between classical error correcting codes and the quantum error
correcting codes precisely the stabilizer codes. We studied also the correspondence between the quantum
stabilizer codes and CWS codes. For major conclusion, the CWS codes which contains the stabilizers codes
and non-stabilizers code is more effective and more efficient compared to the stabilizers codes.
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